from langchain.embeddings.openai import OpenAIEmbeddings
from langchain.text_splitter import TokenTextSplitter
from langchain.vectorstores import FAISS
from vectorview import Vectorview
# Setup
vv = Vectorview(key)
# Do semantic search
with open("./text.txt", "r") as f:
text = f.read()
text_splitter = TokenTextSplitter(chunk_size=40, chunk_overlap=0)
texts = text_splitter.split_text(text)
embeddings = OpenAIEmbeddings()
db = FAISS.from_texts(texts, embeddings)
query = "What did the president say about Ketanji Brown Jackson"
docs_with_score = db.similarity_search_with_score(query, 3)
# Log vv event
vv.event(query, docs_with_score)